
DIGITAL MARBLING
A GPU APPROACH WITH PRECOMPUTED VELOCITY FIELD

Si Wen ∗

David R. Cheriton School of Computer Science
University of Waterloo

F

ABSTRACT

Paper marbling is the art of creating intricate designs on an aqueous surface. We present an interactive digital marbling system
by simulating fluid dynamics on the GPU using precomputed solutions to the Navier-Stokes equations. Experimental results
have shown that our approach is not only significantly faster, but also sufficiently accurate compared to existing approaches.

Keywords: Fluid Simulation, Navier-Stokes Equations, Semi-Lagrangian Techniques, Graphics Processing Unit

CR Categories:
I.3.1 [Computer Graphics]: Hardware Architecture—Graphics processors; I.3.5 [Computer Graphics]: Computational

Geometry and Object Modeling—Physically based modeling;

F

1 INTRODUCTION

Paper marbling is a traditional form of art and printing technique
developed in East Asia around the 10th Century. It was initially
used to produce patterns similar to smooth marble or other stones,
which are applied onto different surfaces, such as book covers and
calligraphy prints.

The marbling process involves dropping oil-based paint on an aque-
ous surface. Artists would then use a rake or stick to manipulate the
flow of the paint to create figures. After the design is completed,
a sheet of washi paper is carefully laid onto the aqueous surface to
capture the floating design. Figure-1 shows an example of a fin-
ished marbled artwork.

Figure 1: Example of marbled art (image courtesy of Jane Carr).

There are a few challenges to traditional marbling. Firstly, it in-
volves a cumbersome setup process. The pigments are difficult to
mix and require many ingredients at exact ratios to achieve the de-

∗swen@uwaterloo.ca

sired effects. Secondly, due to the dynamics of water, precise timing
and accurate applications are needed to produce desired figures and
patterns. Once a mistake is made, the artist has to start over from
scratch. Finally, the beauty of marbling lies not only in the final
product, but also in the evolution of the art. However, the design
process cannot be easily saved.

In recent years, several digital marbling systems have been devel-
oped. Most of these systems model the marbling process as a two-
dimensional Computational Fluid Dynamics (CFD) problem, and
use numerical methods to solve the Navier-Stokes equations. This
tends to be computationally expensive and is usually performed
on the Graphics Processing Unit (GPU) for real-time interactivity.
Nonetheless, even on powerful machines, this cannot be done at a
high resolution in a desirable frame rate.

We made an interesting observation that under certain conditions
such as high viscosity and low external force, the velocity field of
a given fluid exhibits a certain degree of linearity. In applications
such as paper marbling, where visual subjectivity is more impor-
tant than numerical accuracy, we can exploit this property to im-
prove the performance of our marbling system, yet maintain a high
degree of similarity to pure physical approaches. In this paper, we
present a technique where velocity field is generated using trans-
formations of precomputed results. We will also describe the GPU
implementation of our system using vertex and fragment shaders.

2 PREVIOUS WORK

Although extensive research has been done on both fluid dynam-
ics and artistic simulations, the history of marbling simulation is
relatively short. The idea of modeling the marbling system as a
two-dimentional CFD problem was first suggested by Suzuki et al
[13]. Later, Mao et al. [10] extended the system into an interactive
application named AtelierM. Akgun [2] first described a digital tool
suite for creating traditional Turkish art forms, based on numerical
solutions to the Navier-Stokes equations. Acar and Boulanger [1]
introduced a multiscale fluid model to simulate the turbulent flows
in traditional marbling techniques.



Although these systems can model increasingly complex flows,
they do not provide real-time feedback as solving the physical
equations can be extremely time-consuming on the CPU. Jin et al.
[6] presented a different approach which solves the Navier-Stokes
equation on the GPU using the multigrid method [4]. However,
like other finite grid-based fluid solvers, it suffers from blurry paint
outlines due to numerical diffusion and dissipation. Xu et al. [14]
managed to alleviate the numerical problems with higher-order in-
terpolation schemes such as the Back-and-Forth Error Compensa-
tion and Correction (BFECC) algorithm and the MacCormack al-
gorithm. In AtelierM++, Zhao et al. [15] employed the fast and
accurate third-order Unsplit Semi-Lagragian Constrained Interpo-
lation Profile (USCIP) method to further reduce numerical dissipa-
tion, implemented on NVIDIA’s CUDA GPUs.

Apart from the grid-based CFD approaches, there are also a few
different ways to model the marbling system. Ando and Tsuruno
[3] presented an efficient framework that generates vector graph-
ics quality marbled textures based on an explicit surface tracking
method. This solves the problem of the blurry paint interface.
However, because the underlying fluid is still modeled using physi-
cal equations, it is time-consuming and cannot achieve a satisfying
frame rate.

Lu et al. [9] on the other hand discovered an entirely different
approach that models fluid flows using closed-form mathematical
expressions. It produces high-quality marbled art with clearly de-
fined contours. Because it is based on closed-form equations, it is
significantly faster than the physics-based approach, thus allowing
high-quality artwork as well as vector graphics output. However,
only a limited set of functions are defined, such as the paint drop
function, the tine-line pattern function, and the wavy pattern func-
tion. Although the system runs in real-time with user interactions,
it does not allow natural free-hand operations that marbling artists
are most accustomed to.

3 METHOD

This paper follows the two-dimensional grid-based CFD approach.
We present a significantly faster way to generate real-time velocity
field. We were able to implement our system on Apple’s iPad (4th
generation) in full resolution at a high frame rate, thus allowing
marbling artists to interact our system using natural touch gestures.

Our approach is based on two observations on viscous fluids. First,
under certain conditions such as high viscosity, any external force
dissipates quickly. Its area of diffusion is bounded by a relatively
small region of the whole grid. Thus, it is unnecessary to perform
calculations on the entire grid, as at any time most of the result-
ing velocities will be either a zero vector or so negligible that we
can treat it as such. Second, given high viscosity and low external
forces, the velocity field exhibits a certain degree of linearity. In
other words, the velocity of a series of external forces is similar to
the combination of the velocity of each individual force.

In real-life marbling, both the paint and the medium on which the
paint floats are both viscous. In addition, the stick that the artist
uses to manipulate the paint has a thin pointy tip, which allows
precise control of the paint and its surrounding fluid. This means
any external force exerted by the stick is relatively small. Since both
conditions are satisfied, we can exploit the aforementioned property
to devise a fast and stable way to generate velocity fields in real-
time.

Our approach can be broken down into an initialization step and
three repeating steps.

• Step 0: precompute the velocity field of a “unit force”.

• Step 1: compose a new velocity field based on user inputs.

• Step 2: advect density using the composed velocity field.

• Step 3: render onto the screen and an off-screen buffer.

Our algorithm is based on this heuristic without any formal proof.
Nonetheless, we will later compare results of traditional physics-
based approach and our approach to demonstrate its correctness in
both simple and complex scenarios.

3.1 Precomputed Navier-Stokes Equations

We first precompute the velocity field of a “unit force”. In this case,
we set the “unit force” to be a single unit of external force applied
onto the center of an empty velocity field in a pre-specified direc-
tion (in our case, in the positive-y direction). To precompute the
velocity field, we use numerical methods to solve the Navier-Stokes
equations (1-2) following Stam’s semi-Lagrangian techniques [11].

∂u

∂t
= −(u · ∇)u− 1

ρ
∇p+ ν∇2u + F (1)

∇ · u = 0 (2)

For equation (1), ∂u
∂t

represents the velocity of a fluid at any point
in time and is determined by the four acceleration factors given by
terms on the right. These terms respectively represent the advec-
tion, pressure, diffusion, and external force of the fluid, with ρ be-
ing the fluid density and ν being the kinematic viscosity. Equation
(2) enforces the conservation of volume, as we assume our fluid to
be incompressible.

Since we are to precompute the velocity field, performance is not
a concern. We instead focus on accuracy. Thus, we use small
timesteps and employ the fourth-order Runge-Kutta scheme. To
solve the Laplacian operator ∇2, we setup a consistent system of
linear equations and solve for its exact solution. This minimizes
errors that can accumulate in the final velocity field.

Figure 2: The precomputed velocity fields of a “unit force”. Shown
in a 512×512 texture of 8 frames of velocity fields, each being
128×256, with ν = 0.03, ∆t = 0.1.



Because ν > 0, the velocity of a “unit force” diffuses quickly and
dissipates completely after a given amount of time. Thus, the effect
of an external force can be described completely by a finite number
of frames. When ν is big, the number of frames needed will be
small. Figure-2 depicts the frame-by-frame “evolution” of a unit
force, whose velocity dissipates completely after 8-10 frames.

3.2 Composition of Velocity Field

We allow users to interact with the fluid by “drawing” on a touch
screen. We treat these inputs as injection of external forces onto the
existing velocity field (which is initially empty). As a user interacts
with our touch application, we track his/her finger movement across
the screen. We first interpolate the touch inputs and discretize the
resulting spline into uniform segments. This avoids problems when
the user swipes his/her finger too fast or too slow, generating too
many or too few touch points, resulting in unrealistic simulations.
This interpolation/discretization process can be seen in Figure-3.

Figure 3: A sample of touch inputs, represented by red dots. The
red curve is an interpolated spline that connects these inputs. The
black dots are the re-sampled inputs, which is spaced more uni-
formly. The black segments are the discretized velocity vectors.

We then apply the precomputed velocity field to these segments.
Since the segments are not identical to the “unit force” used to pre-
compute the velocity field, we scale and rotate the precompute ve-
locity field accordingly. In addition, since there is a chronological
ordering to the input segments, we apply the precomputed veloc-
ity fields accordingly. For example, suppose the input in Figure-3
is drawn from left to right. The right-most segment is the newest
input, thus its corresponding precomputed velocity field is the first
frame (see in Figure-2). On the other hand, the left-most segment
is drawn 4 frames before the right-most segment, thus its velocity
field has already evolved for 4 frames (or ∆t = 0.4). Therefore,
we need to apply the 5th frame of the precomputed velocity field.
Figure-4 shows how the precomputed velocity fields are being ap-
plied onto each segment.1 The resulting composition is a newly
generated velocity field. It represents the total impact of external
forces on a given fluid.

Figure 4: The transformation and composition of velocity fields.

Unlike the traditional physics-based approach, in which each suc-
cessive velocity field depends on the previous one (or the previ-
ous few when using higher-order schemes), our approach generates

1In reality, the precomputed velocity field is usually much bigger than
depicted in Figure-4, and successive frames overlap much more.

the velocity field from scratch, only depending on current inputs.
This means we need to store inputs (external forces) from previous
frames, which is cheap in terms of memory. It also means the effect
of an external force can last for as many frames as we precompute.
This does not affect the quality of our simulation because in the tra-
ditional approach, an external force will dissipate over time and its
effect deteriorate. Since we precompute and store the entire “evo-
lution” of the “unit force”, we do not lose any information.

3.3 Density Advection

After generating the velocity field, we use it to advect the paint.
Since we are using the grid-based approach, each cell in the grid
represents an amount of paint, or its density. Thus, density advec-
tion involves “transporting” the density from one cell to another
based on the velocity of that cell.

We use the semi-Lagrangian approach for density advection [12].
Instead of advecting the density of a cell forward in time using its
velocity, we trace backward following its velocity and advect the
density of the destination cell. In case the destination is not at the
center of a cell, we interpolate the density of nearby cells to give
a better estimate. This is usually done using bilinear interpolation,
which is prone to numerical dissipation and results in the edge of
marbled shapes being blurry.

To reduce numerical dissipation and thus sharpen the contour
of marbled shapes, we employ the Unsplit Semi-Lagragian Con-
strained Interpolation Profile (USCIP) method, proposed by Kim
et al. [8] and used in AtelierM++ [15]. USCIP is a third-order
interpolation scheme with its polynomial defined as follows:

Φ(x, y) =
∑

0≤i,j≤3

Cijx
iyj + C31x

3y + C13xy
3 (3)

The coefficients of this polynomial are uniquely given by

C00 = φ00

C10 = φx00

C01 = φy00

C20 = 3(φ10 − φ00)− φx10 − 2φx00

C02 = 3(φ01 − φ00)− φy01 − 2φy00

C30 = −2(φ10 − φ00) + φx10 + φx00

C03 = −2(φ01 − φ00) + φy01 + φy00

C21 = 3φ11− 2φx01−φx11− 3(C00 +C01 +C02 +C03)−C20

C31 = −2φ11 +φx01 +φx11 + 2(C00 +C01 +C02 +C03)−C30

C12 = 3φ11− 2φy10−φy11− 3(C00 +C10 +C20 +C30)−C02

C13 = −2φ11 +φy10 +φy11 + 2(C00 +C10 +C20 +C30)−C03

C11 = φx01 − C13 − C12 − C10

(4)

Here, φ00, φ01, φ10, φ11 are the densities at each cell corner; φx =
∂φ
∂x

, φy = ∂φ
∂y

; and φx00, φx10, φx01, φx11, φy00, φy10, φy01, φy11
are the derivatives at each cell corner.



Figure 5: An illustration of the graphics pipeline.

3.4 GPU Implementation

Our target platform (Apple’s iPad 4) has a quad-core GPU which
supports OpenGL ES 2.0 with GLSL 1.20. It is ideal to implement
our method on the GPU using GLSL.

The composition of precomputed velocity field is essentially multi-
texturing. The precomputed velocity field can be uploaded onto the
GPU as textures. Then, for each frame, we perform Steps 1-3 as
outlined at the beginning this section.

Step 1. We compose the precomputed velocity field according to the
input forces. For each input segment, we render a GL QUAD with
the corresponding rotation and scale. We then map its correspond-
ing frame of the precomputed velocity field onto the GL QUAD. In
the fragment shader, we rotate the velocity vectors (since rotating
the GL QUAD does not rotate the velocity vectors in the texture)
and sum them up.

Step 2. We sample both the newly generated velocity field and the
density field of the previous frame. We redraw the density field
with a GL QUAD the size of the screen. In the fragment shader, we
advect the densities using the forementioned USCIP scheme.

Step 3. Finally, we colorize advected densities as a texture and
render it onto the screen.

We use different shaders and Frame Buffer Objects (FBOs) in each
step. Most of the parameters (such as the input segment’s angle
of rotation and its corresponding frame) can be uploaded as uni-
form variable, thus avoids unnecessary computations. This pipeline
can best be visualized in Figure-5. On other platforms that support
Multi-Target Rendering, Steps 2 & 3 can be combined into a single
step.

4 RESULTS

Grid Size Stam’s Ours (CPU) Ours (GPU)
256×192 37ms 18ms 3ms
512×384 186ms 70ms 8ms

1024×768 981ms 270ms 20ms

Table 1: Time took to render a single frame on the iPad 4.

On Apple’s iPad 4 2, we compared our approach with an implemen-
tation of Stam’s approach. As depicted Figure-6, the velocity field
generated using our approach has a high degree of resemblance to

2CPU: A6X 1.4 GHz (dual-core); GPU: PowerVR SGX554MP4 (quad-
core) @ 280MHz; RAM: Quad-channel 533 MHz LPDDR2-1066

Figure 6: Comparison of velocity fields generated using different
methods based on the same settings and same inputs.

that of Stam’s approach, even for complex turbulent flows. This in-
dicates that our result is a good approximation to the physics-based
approach, and validates our hypothesis about fluid’s behaviour un-
der prescribed conditions.

On the other hand, our approach is much more efficient than Stam’s
approach, which can be shown in Table-1.

5 DISCUSSION

5.1 Limitations

An obvious limitation is that our approach depends on the assump-
tion that the viscosity of the fluid is high and the external force is
relatively low. Therefore, our approach is not applicable for other



simulations such as smoke and fire, where viscosity is close to zero
and external force can be large. However, we have used our system
to model other forms of simulation such as the interaction of coffee
and milk, mimicking the result of latte art (Figure-7).

Another limitation is the quality of the marbled art. Although US-
CIP reduces the effect of numerical dissipation, it does not elimi-
nate it completely. Thus, after extensive manipulation on the paint,
the density will eventually get dampened and the marbled art will
appear to be blurry, especially at the edges.

Also, so far our system works for a single color only, which is used
to colorize the density in the last step of rendering. To support
multiple colors, one approach is to use multiple layers of density
field, as proposed by Jin et al. [6]. However, this essentially slows
down the advection step by a factor of k, where k is the number of
layers supported.

In the following section, we propose a way to solve the above two
problems.

Figure 7: A piece of artwork produced using our application. With
a colored filter and some random noise, it resembles latte art.

5.2 Future Improvements

Ando and Tsuruno [3] introduced an explicit surface tracking
method used to generate vector graphics output with sharp contours
and vibrant colors. Instead of representing the marbling paint us-
ing a density grid, this method uses points to track the contour of
the paint. This frees the marbled art from a fixed resolution deter-
mined by the grid size. Nonetheless, in Ando’s method, the un-
derlying fluid is modelled using the traditional grid-based physics
approach. We can combine our velocity composition mechanism
with the front-tracking method in order to achieve vector graphics
quality output, which solves the problem of blurry edges and im-
miscible paint.

We will also develop a tool suite which would allow users to have
access to tools in that of real marbling. This includes the ability to
inject new paint, disperse paint to create ring-shaped figures, save
and replay their works from scratch. In addition, since velocity
composition is independent of results of other frames, it can be eas-
ily inverted. This gives us the ability to “rewind”, allowing users to
go back in time and fix their mistakes. This is impossible to perform
on physics-based approaches.

6 CONCLUSION

Based on the observation that under certain conditions such as high
viscosity and low external force, the velocity field of a fluid exhibits
a certain degree of linearity, we devised an algorithm for generating
real-time velocity field by combining precomputed solutions to the
Navier-Stokes equations. Due to its parallel nature, it is done on
the GPU and is implemented as a stage in our marbling system’s
pipeline. Experiments have shown that it is significantly faster than
existing approaches and is capable of producing marbled artworks
that resembles the ones in real life.

(a) A pattern (b) A figure

Figure 8: Marbled artworks produced by our system.

REFERENCES

[1] R. Acar and P. Boulanger. “Digital Marbling: A Multiscale
Fluid Model,” in IEEE Transactions on Visualization and Com-
puter Graphics. Piscataway, NJ: IEEE Educational Activities
Department, vol. 12, no. 4, pp. 600-614, Jul 2006.

[2] T. Akgun, “The Digital Art of Marbled Paper,” in Leonardo.
Cambridge, MA: The MIT Press, vol. 37, no. 1, pp. 49-51,
2004.

[3] R. Ando and R. Tsuruno, “Vector Graphics Depicting Marbling
Flow,” in Computers & Graphics. Elsevier, vol. 35, no. 1, pp.
148-159, Nov. 2011.

[4] W. Briggs and S. McCormick. A Multigrid Tutorial. Philadel-
phia, PA: SIAM, vol. 72, 2000.

[5] M. J. Harris, “Fast Fluid Dynamics Simulation on the GPU,” in
GPU Gems Volume One. Indianapolis, IN: Pearson Education,
2004 ch. 38, pp. 637-665.

[6] X. Jin et al., “Computer-Generated Marbling Textures: A
GPU-Based Design System,” in Computer Graphics and Appli-
cations. New York, NY: IEEE, vol. 27, no. 2, pp. 78-84, 2007.

[7] D. Khalid and R. Egli. “Precomputed 3D Velocity Field for
Simulating Fluid Dynamics,” in Game Engine Gems, Volume
One. Sudbury, MA: Jones and Bartlett Publishers, ch. 12, pp.
177-184. 2010.

[8] D. Kim et al., “A Semi-Lagrangian CIP Fluid Solver without
Dimensional Splitting,” in Computer Graphics Forum. Black-
well Publishing Ltd, vol. 27, no. 2, pp. 467-475, Apr. 2008.

[9] S. Lu et al., “Mathematical Marbling,” in Computer Graphics
and Applications. New York, NY: IEEE, vol. 32, no. 6, pp. 26-
35, Nov. 2012.

[10] X. Mao et al., “AtelierM: a physically based interactive sys-
tem for creating traditional marbling textures,” in Proc. 1st in-
ternational conference on computer graphics and interactive



techniques in Australasia and South East Asia. New York, NY:
ACM Press, pp. 79-86, Mar. 2003.

[11] J. Stam, “Stable Fluids,” in Proc. SIGGRAPH, 26th annual
conference on Computer Graphics and Interactive Techniques.
New York, NY: ACM Press, pp. 121-128, 1999.

[12] J. Stam, “Real-Time Fluid Dynamics for Games,” in Proc.
2003 Game Developer Conference. Game Developer Confer-
ence 2003, vol. 18, Mar. 2003.

[13] T. Suzuki et al., “Simulating Marbling with Computer Graph-
ics, ,” in Proc. IASTED International Conference on Visualiza-
tion, Imaging, and Imaging Processing. Calgary, AB, Canada:
IASTED, Sep. 2001.

[14] J. Xu, et al., “Nondissipative Marbling,” in Computer Graph-
ics and Applications. New York, NY: IEEE, vol. 28, no. 2, pp.
35-43, 2008.

[15] H. Zhao et al., “AtelierM++: a fast and accurate marbling
system,” in Multimedia Tools and Applications. New York, NY:
Springer, vol. 44, no. 2, pp. 187-203, Sep. 2009.


